Scientists develop method to study malaria's sticky proteins

· News-Medical

The study, published today as a Reviewed Preprint in eLife, introduces an important approach for generating Plasmodium falciparum parasite lines that express specific variants of a sticky adhesin molecule, according to eLife's editors. They say that it also provides compelling evidence for an innovative and rigorous platform that can explore how malaria causes disease.

"A key problem in studying PfEMP1 is that when you grow malaria in the lab, it results in a population of parasites with diverse PfEMP1 proteins with different properties," explains lead author Jakob Cronshagen, at the time of the study a doctoral student shared between the Bruchhaus and Spielmann labs at the Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany. "Researchers have tried to select for parasite strains producing certain PfEMP1 proteins, or use antibodies to study them, but this has proved challenging."

To address this, Cronshagen and colleagues used a method called selection linked integration (SLI), in which an antibiotic is used to selectively enrich parasites containing a specific type of protein. This generated parasites that predominantly make one specific PfEMP1 protein, enabling the team to study facets of PfEMP1 biology in more detail.

Tobias Spielmann, Senior Author, Research Group Leader at the Bernhard Nocht Institute for Tropical MedicineThe way in which PfEMP1 functions and how it is neutralised by human antibodies are increasingly being uncovered on a structural level and are essential for understanding malaria pathology and immune responses in patients. The straightforward capacity to generate cell-adherent parasite lines uniformly expressing a single PfEMP1 of interest will open up new approaches to block these pathogenicity proteins as a new therapeutic strategy in malaria."

Source:

eLife