Exploring the role of gut microbes in the aging process

· News-Medical

Aging is a universal and complex process affecting all organisms, characterized by several genetic hallmarks such as telomere attrition, genomic instability, and epigenetic changes. Over time, aging brings about physical, biochemical, and metabolic shifts in the human body. One significant yet understudied factor in this process is the gut microbiome (GM)-;a diverse microbial community that profoundly influences health. This review delves into the dynamic interplay between the gut microbiome and aging, highlighting microbiota-dependent mechanisms that regulate aging, and examines interventions aimed at promoting healthy aging through microbiome modulation.

Dynamics of gut microbiome across lifespan

Gut microbiome and aging-related disorders

Aging-associated shifts in the gut microbiome are linked to various age-related diseases, including neurodegenerative disorders like Alzheimer's disease (AD) and Parkinson's disease (PD). Dysbiosis, or microbial imbalance, has been implicated in inflammaging, a chronic, low-grade inflammation that accelerates aging. This process is tied to diseases such as AD, PD, cardiovascular conditions, and Type 2 diabetes. Reduced levels of beneficial SCFA-producing bacteria and increased gut permeability exacerbate inflammation, which accelerates disease progression.

Gut microbiome and immune system

The gut microbiome plays a crucial role in shaping the immune system, from infancy to old age. Immunosenescence, a gradual decline in immune function, is closely tied to changes in the gut microbiome. Loss of gut microbial diversity diminishes the immune system's ability to fend off infections, which is particularly problematic in the elderly. Studies show that maintaining microbial balance in older adults can potentially delay immunosenescence and improve immune response, reducing susceptibility to infections and age-related diseases.

Metabolic changes and gut microbiome

The gut microbiome produces a range of metabolites, including SCFAs, polyamines, and reactive oxygen species (ROS), that influence metabolic processes and aging. SCFAs like butyrate have been shown to prevent age-related physiological decline by enhancing intestinal barrier function, modulating immune responses, and inhibiting cellular senescence. However, dysbiosis disrupts these processes, contributing to metabolic disorders such as obesity and insulin resistance.

Interventions for healthy aging

Conclusions

The gut microbiome holds a central role in human aging, influencing everything from metabolic function to immune health. By modulating the gut microbiome through lifestyle changes and interventions, it may be possible to slow down the aging process, reduce the risk of age-related diseases, and promote healthier aging.

Source:

Xia & He Publishing Inc.

Journal reference: